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Abstract

A system identification procedure is formulated for estimation of parameters associated with a dynamic
model of a single-degree-of-freedom foam-mass system. The foam is modelled as a linear viscoelastic
material, whose constitutive law is expressed by an exponential hereditary relaxation kernel. The
identification procedure is based on modelling the free response of the system as a Prony series (sum of
exponentials terms) and fitting this Prony series to the data. This estimated response model is then utilized
to estimate the parameters in the system model based on an explicit solution of the model. The procedure is
analyzed for its reliability under different sources of error and uncertainties, such as the presence of weak
components and experimental noise, and some modifications are evaluated to improve the robustness of the
procedure. Finally, the procedure is applied to experimental data to obtain relevant stiffness, viscous and
viscoelastic parameters associated with the system. Variations in values of these parameters as a function of
static compression are also investigated.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Foam is an important engineering material, offering unique advantages in terms of low cost and
weight, ease of manufacture and energy absorption properties. It has thus found use in many
applications: acoustic absorption, impact retardation, and mechanical damping to name a few. In
most modern automobile seats, static comfort and vibration isolation are now achieved through
the use of foam alone. The realization of the potential of foam as an important engineering
material has inspired a close scrutiny of its structure and properties [1–3].
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1.1. Mechanical properties of foam

As an engineering material, foam has been found to be a non-linear, viscoelastic material whose
static and dynamic behavior are sensitive to many variables, such as level of compression and
amplitude and frequency of excitation. The non-linear behavior of foam under compression
manifests itself in large variations in its local stiffness or elastic modulus as a function of the
compressive strain. Such a change can be attributed to the structural and chemical changes that
occur as the foam is compressed and exercised [2,4,5]. Exercising the foam results in heat
generation, and temperature changes affect the chemical properties of the polymer bonds [4].
Furthermore, for a given compression level, the large amplitude dynamics differ from those under
small amplitudes of excitation.
Viscoelasticity of the foam manifests itself in different ways, such as gradual deformation of a

block of foam under constant stress (creep behavior), and stress relaxation in the block when it is
subjected to a constant strain. In general, viscoelasticity is a phenomenon associated with time
variations in a material’s response [6]. Thus, the instantaneous stress in the material depends upon
both the instantaneous strain and the rate of the strain, as well as higher time derivatives of the
strain. As a consequence of such stress–strain relations, foam typically possesses several time
constants, some of them quite long, which result in the material taking a long time to achieve its
steady state. In the case of dynamic loading, the strain rate, the excitation frequency, the duration
of excitation, and the recovery time all affect how the foam responds to a mechanical input.
Furthermore, the dynamic stiffness of the foam differs from the static one and shows dependence
on the mean level of compression. The viscoelastic properties of foam are also known to be
sensitive to humidity and temperature [4,5].

1.2. Mathematical models for foam behavior

In an attempt to describe some of the above effects mathematically, numerous analytical
models have been proposed. The modelling efforts vary from simple data-fitting to developing
micro-level constitutive relations. Several constitutive laws have been proposed which describe the
stress–strain relations in terms of quantities like creep compliance, relaxation modulus, the
storage and loss moduli and dynamic viscosity. Some of these constitutive laws have been
developed with the aid of mechanical models consisting of combinations of springs and viscous
dashpots. The well-known Voigt, Maxwell [6], Kelvin [7], and Wiechart [8] models are
representative examples of such models. Some other laws have been derived directly from
considerations of continuum mechanics principles [9,10].
The models of viscoelasticity have traditionally used a hereditary approach where the stress in

the material is considered a function of the current state of strain, as well as past history of
strain in the material. Convolution integral type models are the most widely used models based
on this approach, where the stress is assumed to be given by the convolution of strain-rate
history with a weighting function, called relaxation function [6]. Although the relaxation
function can, in general, be a non-linear function of strain as well as time, for small
displacements it can be assumed to be independent of the material strain, yielding a linear
model. The linear law governing the stress s and the strain e under uniaxial loading of the material
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is [11]

sðtÞ ¼
Z t

0

Gðt � tÞ’eðtÞ dt; ð1Þ

where GðtÞ is the relaxation function. An alternative form of this expression in terms of strain
history is

sðtÞ ¼ E eðtÞ �
Z t

0

Gðt � tÞeðtÞ dt
� �

; ð2Þ

where Gðt � tÞ is a difference type relaxation kernel of the material and E is the instantaneous
Young’s modulus. The lower limit of the integral is zero under the assumption that the strain is
first imposed at time t ¼ 0:
It has been shown that, if a rational transfer function between stress and strain is assumed

for the linear hereditary material, the relaxation kernel consists of a sum of exponentials
[12,13]:

GðtÞ ¼
XN

i¼1

aie
�ai t: ð3Þ

This form of kernel has been most popular because of its simplicity, and because it has a clear
physical interpretation in terms of the time constants ti ¼ a�1i associated with the response of the
viscoelastic material. The time constants essentially quantify the relaxation or creep behavior of a
viscoelastic substance. In models with several Maxwell units in parallel, a time constant ti is the
time required by ith spring to attain its equilibrium state [6]. A viscoelastic solid such as foam may
possess a large number of time constants ranging from very small (order of fractions of a second)
to very long (several days).

1.2.1. Mechanics of a dynamical system with foam as an element
For a dynamic system that incorporates foam only as a component, it is necessary to identify

the contribution of the foam in terms of structural parameters like inertia, damping, and stiffness
of the complete system. The choice of the model or the form of the constitutive law for the foam is
then guided by the loading conditions, application at hand, and ease of incorporation into a
structural equation of motion which may include foam as an element. In a dynamic system with a
hereditary viscoelastic model for the foam, the equation of motion takes the form of an integro-
differential equation. For a system with an external mass element, such as a heavy rigid block
riding on the foam, the inertia of the foam can be neglected. The constitutive law for the foam,
given by Eq. (2), however still needs to be modified to incorporate a viscous damping term. Such
an (integro-differential) equation of motion for the mass-foam system, which contains inertia,
viscous damping, stiffness, and viscoelastic parameters, is studied here [14]. As shown by
Muravyov and Hutton [15], and given in Section 2, the initial condition response of this system
can be expressed as a sum of N þ 2 exponentials, where N is the number of exponential terms in
the relaxation kernel. The coefficients in this response are an implicit function of the model
parameters and can thus form a basis to identify the system parameters.

ARTICLE IN PRESS

R. Singh et al. / Journal of Sound and Vibration 264 (2003) 1005–1043 1007



1.3. System identification technique

The parameters of a dynamical system can be estimated by an identification technique that uses
the response of the system to external excitations. The identification procedure is guided, of
course, by the choice of the model and availability of suitable measurements of inputs and
responses. In the case of linear models, an identification procedure can be easily formulated
because of availability of the transform techniques. However, a major concern, even in linear
cases, is the robustness of the procedure so that accurate estimates of the desired parameters may
be obtained in presence of external disturbances and measurement errors.
The present study concerns development of a robust system-identification technique for

estimating the material constants associated with the single-degree-of-freedom model for a foam-
mass system proposed by White et al. [14]. The technique utilizes the transient response of the
system. A linear model is considered under the assumption that the amplitudes of initial
displacement as well as system response are sufficiently small.

1.3.1. Prony’s method
The identification technique is based on modelling the free acceleration response of the system

about an equilibrium position as a sum of a finite number of exponential terms. Since a Prony
series is a sum of exponentials model, the procedure of fitting the model to the data is commonly
referred to as Prony’s method. Note that this model form is consistent with the form of solution
derived for the dynamical system model [15]. If samples of a sequence fyng are available, a Prony’s
model predicts yn with a sum of L complex exponentials [16]:

#yn ¼
XL

k¼1

Ake
½ðakþi2pfkÞnTþiyk	; ð4Þ

for 0pnpM � 1; where T is the sampling interval in s, Ak are the amplitudes of the complex
exponentials, ak are the decay factors ðs�1Þ; fk are the damped natural frequencies in Hz, yk are the

initial phases in rad, and i denotes
ffiffiffiffiffiffiffi
�1

p
: Here it has been assumed in the formulation that the

exponentials occur in complex conjugate pairs because that is typically what was found in models
of the experimental data. However, the estimation method, described below, does not restrict the
model to only have complex conjugate pairs of exponentials and some of the exponentials in the
model could be real.
In order to utilize the results of Prony’s method for the current problem, the discrete form of

the system’s free response is expressed as a sum of exponentials

xn ¼
XL

k¼1

Cke
ðpkTÞn; ð5Þ

where T is the sampling interval. Comparing Eqs. (4) and (5) for coefficients gives

Ck ¼ Ake
iyk and pk ¼ ak þ i2pfk ð6Þ

for k ¼ 1; 2;y;L: If xðnTÞ is the sampled impulse response, hðnTÞ; of the system, then its
z-transform, the discrete system’s transfer function ðHðzÞÞ; is a ratio of polynomials. Thus, in
essence, the response is being modelled as an auto-regressive moving average (ARMA) process.
This approach is fundamentally similar to that used by Yu and Haddad [17,18].
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The estimation of the parameters of a Prony series model consists of three steps [16]. In the first
step, the response at one time is modelled as a weighted sum of the response at previous times. The
weights, or linear prediction parameters, are determined through a linear least-squares fit to the
data. This is akin to the algorithms used in AR and ARMA model parameter estimation [16]. In
the second step, the zeros of a so-called linear prediction polynomial, whose coefficients are the
linear prediction parameters of step 1, are determined. These two steps essentially constitute the
process of determination of the poles of an auto-regressive (AR) model of the data. The zeros of
the prediction polynomial are thus also called the poles of the model, as they are in AR estimation.
In the third step, a set of linear equations, functions of the poles estimated in step 2 and the
response data, is solved in a least-squares sense to determine the amplitudes of the Prony series
terms; these are also the residues associated with each of the model poles.
The identification technique thus formulated on the basis of Prony’s method, is then analyzed for

its reliability with experimental data. Several sources of errors and uncertainties are identified, such
as the presence of low-amplitude components and noise, and suitable remedies to overcome the
associated problems are evaluated by means of numerical simulations. Higher order models, which
increase the model span ðLTÞ and allow for modelling of the noise structure, were found to be useful
in improving parameter estimates and identifying low-amplitude components in the model. The
resulting identification process is shown to be robust. The identification technique is finally applied to
acceleration response data from a free-vibration experiment, and the parameters of the foam model
in uniaxial compression are estimated under different system configurations. A static-creep
experiment is also performed to estimate the longer time constants associated with the foam block.

2. Formulation of problem and solution procedure

A dynamic viscoelastic foam-mass system constrained to undergo linear unidirectional motion,
as shown in Fig. 1, can be modelled as a single-degree-of-freedom system. The equation of motion
of this system, as considered by White et al. [14], is

m .x þ c ’x þ kx þ k3x
3 þ k5x

5 � k

Z t

�N

Gðt � tÞxðtÞ dt ¼ f ðtÞ; ð7Þ

where xðtÞ represents the absolute vertical displacement of the top mass from its static equilibrium
configuration, c is the viscous damping coefficient, k; k3 and k5 are the linear, cubic and fifth order
stiffness terms, and Gðt � tÞ is the relaxation kernel for which a sum of exponential model
(Eq. (3)) is used. Here, f ðtÞ represents a general forcing term which may include contributions
from external excitation and dry friction. For a free vibration experiment with negligible dry
friction, f ðtÞ ¼ 0: Furthermore, if the amplitude of response is small, the cubic and fifth order
terms can be neglected (a technique to identify the full non-linear model is described elsewhere
[14]). The equation of motion becomes linear under this small response assumption

m .x þ c ’x þ kx � k

Z t

0

XN

i¼1

aie
�aiðt�tÞxðtÞ dt ¼ 0; ð8Þ

where the lower limit of integration is set to zero under the assumption that the motion starts at
t ¼ 0: Free responses are generated by means of suitable initial conditions xð0Þ and ’xð0Þ:
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Muravyov and Hutton [15] have investigated the analytical solution for the response of this
system. The solution process is based on expressing the free response as a sum of N þ 2 complex
exponential terms

xðtÞ ¼
XNþ2

j¼1

Cje
pjt; ð9Þ

where the coefficients Cj are called residues in reference to partial fraction expansion of the
Laplace transform of the above equation, and pj are the system eigenvalues. N is the number of
terms in the relaxation kernel. By substituting this solution into the equation of motion (Eq. (8))
and setting the sum of the coefficients of each time-dependent exponential term to zero the
following equations are obtained:

mp2j þ cpj þ k 1�
XN

i¼1

ai

pj þ ai

 !
¼ 0; j ¼ 1; 2;y;N þ 2; ð10Þ

XNþ2

j¼1

ai

pj þ ai

� �
Cj ¼ 0; i ¼ 1; 2;y;N: ð11Þ

The relationships for initial conditions are

XNþ2

j¼1

Cj ¼ x0 ð12aÞ

and

XNþ2

j¼1

Cjpj ¼ ’x0: ð12bÞ
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If the initial conditions and system parameters m; c; k; ai and ai are already known, Eqs. (10)–(12)
can be used to obtain the response parameters Cj and pj; and thus generate a closed form solution
for the response xðtÞ [15].
For the system identification problem, the task is to use the samples of free vibration response

xðtÞ to calculate the material parameters c; k; ai and ai: This is achieved through a three-step
process described below:

1. Express the response as a sum of complex exponentials, as given in Eq. (9), and obtain an
estimate of the complex coefficients Cj and pj by using Prony’s method.
Note that in the second stage of the Prony method, the poles are estimates of epjT ; where T is

the sampling interval in s. Therefore, it is straightforward to estimate the pj once estimates of
the poles are known. In the last stage of the Prony method the Cj; the coefficients of the Prony
series terms, are estimated.

2. Use the estimates of Cj and pj in Eq. (11) to calculate ai:
Eq. (11) can be simplified to

XNþ2

j¼1

Cj

pj þ ai

¼ 0; i ¼ 1; 2;y;N ð13Þ

and then the N þ 2 partial fractions combined to produce a polynomial in powers of ai in the
numerator. This stage therefore involves generating the numerator polynomial, PðaiÞ; and
finding the roots of PðaiÞ ¼ 0; i.e.,

PðaiÞ ¼
XNþ2

i¼1

Cj

YNþ2

i¼1; iaj

ðpj þ aiÞ ¼ 0: ð14Þ

This equation is of order N þ 1 in ai: Thus there arise N þ 1 roots for N unknowns ai: This
leads to the problem of identifying the N true roots out of a total of N þ 1 roots. The problem
is discussed in Section 3.1, where it is shown that the extra root is a function of initial
conditions xð0Þ and ’xð0Þ:

3. If it is assumed that the genuine N roots for ai are known, the remaining material parameters
can be determined by using Eq. (10), which gives rise to a linear set of N þ 2 simultaneous
equations in the N þ 2 unknowns c; k and ai: These equations can be put in a matrix form as

p1 1
�1

p1 þ a1
y

�1
p1 þ aN

p2 1
�1

p2 þ a1
y

�1
p2 þ aN

? ? ? ? ?

? ? ? ? ?

pNþ2 1
�1

pNþ2 þ a1
?

�1
pNþ2 þ aN

2
6666666666664

3
7777777777775

c

k

*a1

y

*aN

2
6666664

3
7777775
¼ �m

p21

p22

y

y

p2Nþ2

2
6666664

3
7777775
; ð15Þ

where *ai ¼ kai:
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Eqs. (13) and (15) constitute the required equations for system identification. The equations for
the initial conditions are not explicitly needed, except for identifying the ‘spurious’ ai in stage 2.
It is important to note that the samples of displacement response xðtÞ are not directly available.

In actual experiments, the acceleration response .xðtÞ is measured by using accelerometers. Hence,
.xðtÞ is first expressed as a sum of complex exponentials

.xðtÞ ¼
XNþ2

j¼1

Dje
pjt: ð16Þ

The displacement response xðtÞ is calculated from .xðtÞ by integration, assuming stability and that
xðtÞ contains no constant term (that is, a term with pj ¼ 0). Then, the coefficients Cj in Eq. (9) are
given by Cj ¼ Dj=p2j : The coefficients Dj and the frequencies pj are estimated by using Prony’s
method on discrete samples of .xðtÞ; as discussed in Section 1.3.

3. Theoretical and numerical analysis of identification procedure

In Section 2, a method for identification of system parameters based on Prony’s method of
modelling the response was developed. In this section, the problems concerning the applicability
and reliability of the method, when used to model experimental data, are addressed. The sources
of errors and uncertainties are identified and remedies are suggested to make the identification
procedure robust in light of these problems. Analysis is carried out for systems with single-
ðN ¼ 1Þ and two-term ðN ¼ 2Þ relaxation kernels. The case of N ¼ 1 is chosen for simplicity. For
this case, the latter two stages of the system identification procedure can be carried out
analytically, since Eq. (14) generates a quadratic equation in ai: The case N ¼ 2 is of special
interest since it is generally the order observed in the experimental analysis with the foam-mass
system. Numerical simulations were carried out for a system with N ¼ 2: The parameter values
chosen for simulation were: m ¼ 1 kg; c ¼ 10 N s=m; k ¼ 2500 N=m; a1;2 ¼ �374i s�1 and a1;2 ¼
10790i s�1: A sampling frequency of 256 Hz was used for simulations and the simulated time
series had, typically, 250–500 samples. These parameters were chosen to generate time histories
similar to those observed in the experiments.

3.1. The problem of the spurious ai

Eq. (14) is a ðN þ 1Þth order polynomial in a single variable, and can therefore be written as

A0b
Nþ1 þ A1b

N þ A2b
N�1 þ?þ ANbþ ANþ1 ¼ 0; ð17Þ

where a is the independent variable. An algebraic evaluation was carried out to analyze the
specific dependence of ai on the response coefficients Cj and pj: The evaluation revealed that, of
the N þ 1 roots of Eq. (17), N are the genuine roots ðaiÞ and the remaining one is a ‘spurious’ root,
in the sense that its value depends upon the initial conditions xð0Þ and ’xð0Þ: The expression for this
spurious root was found to be

b ¼ aspurious ¼
’x0

x0
þ

c

m
ð18Þ
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and this result is independent of the number of terms in the relaxation kernel. For the case of
N ¼ 1; the derivation is presented in Appendix A. In the presence of noise, the expression is more
complicated (see Section 3.6). By performing experiments with different initial conditions, it
would be possible to recognize and reject the spurious root, since it will be the only root that
varies with initial conditions. Furthermore, it may be noted that A0 ¼ xð0Þ 8N: Thus if the initial
displacement xð0Þ is zero, the spurious root does not arise for any number of terms in the
relaxation kernel, since the leading coefficient A0 in Eq. (17) becomes identically zero. Eq. (13)
then yields exactly N roots. This would be the ideal case where the response is initiated by means
of an impulse at t ¼ 0: However, in real circumstances, as discussed below, it is difficult to realize
zero displacement at the onset of the free motion.

3.2. Non-ideal inputs and problem of determining onset of free motion

The identification method, as indicated above, is based upon the initial condition response of
the dynamical system, with xð0Þ ¼ 0 to remove the spurious ai problem. There are several ways
that one might approach measuring such an initial condition response. An ideal impulse response
satisfies the initial condition requirements, but cannot be achieved in an experiment. We have
chosen to use a non-ideal impulsive excitation and to extract the impulse response, as described
below. Another technique to produce this xð0Þ ¼ 0 free response might be to excite the system
sinusoidally and then remove the excitation once steady state has been achieved. Yet, another
approach to generating the impulse response would be to deconvolve the two signals (force and
response) by using a division of their Fourier transforms and inverse transforming the result.
However, if the practicalities of implementing these approaches are considered, it can be seen that
each approach comes with its own set of difficulties when having to deal with experimental
constraints. Results from simulations indicate that the chosen technique, which is essentially a
deconvolution of the response and input models, is reasonably robust.
It is expected that the response to non-ideal impulsive inputs, such as one obtained with an

impulse hammer, will be close to an ideal initial-velocity response if the impulse lasts a short
duration of time. Furthermore, the application of only an initial displacement to generate the
response is difficult because of stress relaxation and ‘memory’ exhibited by the foam. The impulse
response of the system needs to be recovered from the available response to non-ideal inputs, by
means of a deconvolution technique. It is possible to carry out this process analytically if the input
is modelled using some standard (and convenient) functions, such as complex exponentials. Note
that the force needs to be sufficiently small, so as to keep the system response linear.

3.2.1. Modified equations for non-ideal impulsive input

Consider an external ‘impulsive’ force f ðtÞ that lasts for a duration of t ¼ t0 s: It is assumed here
that f ðtÞ; for 0ptpt0; can be expressed as a sum of R complex exponentials. Then the equation of
motion for the system is

m .x þ c ’x þ kx � k

Z t

0

XN

i¼1

aie
�aiðt�tÞxðtÞ dt ¼ f ðtÞ: ð19Þ
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The forcing function f ðtÞ is

f ðtÞ ¼

PR
r¼1 Fre

mrt for 0ptpt0;

0 otherwise

(
ð20Þ

and the initial conditions are x0 ¼ 0 and ’x0 ¼ 0: Let hðtÞ represent the impulse-response of the
system. Then, the system response xðtÞ is given by the convolution of hðtÞ with the force f ðtÞ
(xðtÞ ¼ hðtÞ%f ðtÞ; where % denotes convolution). Following the notation used for the free-
response, let the impulse response be expressed as a sum of N þ 2 exponentials:

hðtÞ ¼
XNþ2

j¼1

Cje
pjt; ð21Þ

where
P

j Cj ¼ 0: Convolving the expressions for hðtÞ and f ðtÞ in Eqs. (21) and (20), respectively,
the response xðtÞ becomes

xðtÞ ¼

0 for to0;PR
r¼1 Fr

PNþ2
j¼1

Cj

mr � pj

� �
emrt

�
PNþ2

j¼1 Cj

PR
r¼1

Fr

mr � pj

� �
epjt for 0ptpt0;

PNþ2
j¼1 Cj

PR
r¼1 Fr

eðmr�pjÞt0 � 1

mr � pj

� �� �
epjt for t > t0:

8>>>>>>>>>><
>>>>>>>>>>:

ð22Þ

Clearly, given the forcing function in Eq. (20), the residues Cj of the impulse response can be
recovered from the measured values of xðtÞ; by using the expression for xðtÞ for t > t0: Hence,
the system identification procedure would proceed by fitting a sum of complex exponentials to the
response data for t > t0 (by using Prony’s method), using Eq. (22) to calculate the coefficients Cj

from the residues of the response, and finally using the Cj and pj in the second and third steps of
the identification procedure to estimate the material parameters.
It can be shown from Eq. (22) that displacement xðtÞ; velocity ’xðtÞ and acceleration .xðtÞ are

continuous at time t ¼ t0: However, the slope of the acceleration response has a jump
discontinuity of magnitude

P
r Frmre

mrt0
P

j Cjpj; at t ¼ t0: This indicates that the acceleration
undergoes a sharp change in magnitude at t ¼ t0; at the onset of the free motion. The force
imparted by the impact hammer can often be modelled approximately as a half-sine pulse. In that
case, the forcing function can be expressed as f ðtÞ ¼ ðKp=2t0Þ sinðpt=t0Þ; where K is the ‘strength’
of the input (area under f ðtÞ versus t curve), and the free response is given by

xðtÞ ¼ K
XNþ2

j¼1

Cj
1þ e�pjt0

2ð1þ ðp2j t20=p
2ÞÞ

( )
epjt: ð23Þ

The response approaches KhðtÞ; as t0-0: Hence, for small t0; xðtÞ; tXt0; can be assumed to be the
impulse response hðtÞ of the system for system identification purposes. Note that only the relative
magnitudes of Cj are needed in the identification procedure and, therefore, the factor of K is
irrelevant.
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The time t0 needs to be determined accurately. If the estimated value #t0 is greater than t0; some
fast decaying terms may not be modelled. If #t0ot0; then two problems arise: (1) the transition
from part of the motion when force is active ð#t0otot0Þ to the free motion ðt > t0Þ introduces high
frequencies into the signal, leading to spurious high-frequency pole clusters in the estimation
process (stage 1); and (2) the excitation f ðtÞ contributes directly to the response for #t0otot0 and,
therefore, a different solution form consisting of a sum of R þ N þ 2 exponentials is required for
this portion of the response. Consequently, the error in the location of t0 must be minimized which
requires a high sampling frequency.

3.3. Measurement noise

Measurement noise makes the estimates of residues and system poles (and hence the estimates
of frequency and damping components) inaccurate, both in terms of variance and bias. In this
section, modifications to the methodology that improve the accuracy of estimation of poles and
residues are presented. First, the problem of estimation of poles will be addressed. In Prony’s
method, where the response data is modelled as a sum of complex exponentials, the poles are
estimated by first using a forward prediction model to estimate the coefficients of a polynomial
and then finding the zeros of this polynomial. Several different modifications to this basic
algorithm have been suggested over the past few years to overcome the problems arising due to
noise. Significant among these techniques are: use of high prediction orders [16], use of both
forward and backward linear prediction polynomial zeros, singular value decomposition (SVD)
based methods [16], and some non-linear schemes [19,20].

3.3.1. Higher model orders and backward prediction
The estimation bias can be reduced by choosing a linear prediction order much higher than the

number of exponentials actually present in the signal [21]. It has been observed that if models of
several different orders are fitted to the data, the signal poles change very little at high model
orders [22,23]. However, the extraneous poles, which in effect attempt to model the noise, change
significantly as the model order is changed. Thus, the pole plots in the complex z-domain,
resulting from several different order estimations, contain clusters that correspond to the signal
poles. As the model order increases, the positions of the clusters approach the pole positions of the
noise free signal.
Selection of very high model orders is problematic because of the small amount of data

available for estimation, and numerical errors introduced by root solving. As the sampling rate
increases, the signal poles all migrate towards the unit circle, which is the region typically occupied
by the noise poles. This makes it difficult to identify whether a pole is a signal pole or a noise pole.
The issues related to sampling rate selection are discussed in Section 3.4. The problem is
illustrated in Fig. 2(a), which shows the poles of a simulated response ðN ¼ 2Þ corrupted by a
zero-mean, stationary, Gaussian distributed, band-limited noise signal, yielding a 50 dB signal-to-
noise ratio (SNR), calculated over the first 2 s of the signal. The noise is band-limited to 0:4� Fs;
where Fs ¼ 256 Hz is the sampling frequency for the simulations. A fourth order Butterworth
filter was used to band-limit the white noise. Model orders of 20–80 were used for the estimation
of the system poles. Good clustering behavior is observed, but the true locations are obscured by
the presence of too many extraneous poles.
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A clearer picture is obtained by applying the estimation procedure to the time-reversed data.
Since the system under investigation is stable, the poles of the time-reversed response data appear
outside the unit circle, at positions reciprocal to those obtained from the forward prediction on
the original sequence. The argument is that the statistics of the broadband stationary random
process change little if the process is time reversed. Hence, the extraneous noise-poles tend to
remain inside the unit circle. While this is not strictly true for band-limited noise, the extra poles
corresponding to the Butterworth filter (used for generating the band-limited structure for the
noise) are often difficult to observe. This issue is addressed in Section 3.3.2. Hence for the chosen
model orders, the poles of the band-limited noise also remain inside the unit circle. This greatly
facilitates locating the position of genuine poles, especially when the clustering of the poles from
different model orders is not very good. The results of simulation with time-reversed data, for the
same system and model orders, are shown in Fig. 2(b). The locations of genuine poles are clearly
identifiable from their clusters, although the clustering itself is poorer for the weaker mode, which
in this case is the higher-frequency mode. The estimates of the pole-locations represent the centers
of the corresponding clusters.
Further improvement in the estimates of genuine pole locations can be achieved by recording

several sets of responses obtained under identical experimental conditions, subjecting them to the
estimation procedure with the modifications described above, and superposing the results. This
can be done provided that it is possible to repeat the experiments with a high degree of accuracy.
To summarize, good estimates of system poles locations can be obtained by using different but

high model orders on the time-reversed data sequence. The true poles are identified by their good
clustering behavior. The estimates of pole locations, from individual time series, can then be
averaged over several realizations of the system response. It may be noted that the model orders
for Prony’s series cannot be chosen to be arbitrarily high. Depending upon the level of noise
contamination and the length of available response data, there exists an upper limit on the choice
of model orders, beyond which the variance of estimation actually increases. Generally, a model
order of one-tenth to one-fourth of the total number of data points is considered good for reliable
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prediction. ‘�’ denotes a pole estimate, ‘þ’ denotes the true location of a pole. SNR ¼ 50 dB:

R. Singh et al. / Journal of Sound and Vibration 264 (2003) 1005–10431016



estimation. The method, as presented above, was used for estimation of pole locations for the
present work.
The above technique was applied to the simulated response of a system with a two-term

relaxation kernel ðN ¼ 2Þ: The true locations of the four system poles and their estimates for 100
realizations of response, for SNRs of 50 and 60 dB of noise, are shown in Fig. 3. The indicated
values of SNRs were their average values across the first 2 s of the time histories. The number of
terms ðN þ 2Þ was determined by observing the number of pole clusters outside the unit circle. The
influence of the noise is clear in the increased variance of the pole position estimates in the case of
50 dB SNR. This is particularly noticeable for the second (higher frequency) component of the
response.

3.3.2. Filtering

An obvious strategy to improve the SNR would be to low-pass filter the data. Here, zero-phase
filtering is required since any phase distortion caused by the filter would have an undesirable effect
on the identification scheme, which is performed in the time domain. For zero-phase filtering, the
signal is first low-pass filtered by using a suitable filter, the filtered data is time reversed and passed
again through the same filter, and then time reversed once more [24]. However, the use of filtering
has the disadvantage that it imposes additional structure on the data. The set of poles arising from
stage 2 of the Prony series will thus include contributions from the filter as well as from the signal
and the noise. In the presence of noise, the filter poles generally require high prediction orders for
their detection. At low model orders, the presence of the filter poles results in bias in the estimates
of the signal poles. This is illustrated in Figs. 4(a) and (b) for a system with N ¼ 2: The filter used
was a fourth order Butterworth filter with cut-off frequency of 20 Hz: The poles of the filter are
not isolated even at model orders as high as 80 for the data length of 256 points. This can be
observed in Fig. 4(c). The filtered data contains both the components directly related to the poles
of the Butterworth filter as well as their reciprocals, because of the zero-phase filtering process,
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and the components due to the system’s original poles. Thus filtering was not found to be useful in
improving the estimation of the system poles.

3.3.3. Estimation of residues in presence of noise
Estimation of residues in presence of noise is achieved through a least-squares technique, in the

last step of Prony’s method. Since the system response has the form given by Eq. (9), the mth
sample of the response data fxmg can be written as

xm ¼
XNþ2

j¼1

CjðXjÞ
m; m ¼ 0; 1;y; ðM � 1Þ; ð24Þ

where M is the number of samples in response sequence fxmg and Xj are the system poles which
are related to the eigenvalues pj by Xj ¼ expðpj=FsÞ: In a noise-free situation, the first N þ 2
samples of fxmg can be used to set up a linear set of N þ 2 equations, which can be solved for the
N þ 2 unknowns Cj: In the presence of noise, more samples of fxmg can be utilized to obtain a
least-squares solution for Cj: The least-squares problem can be put in the form

VC ¼ ½x	 #M; ð25Þ
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where V is a Vandermonde matrix:

V ¼

1 1 y 1

#X1
#X2 y #XNþ2

^ ^ ^ ^

#X
#M�1
1

#X
#M�1
2 y #X

#M�1
Nþ2

2
66664

3
77775; ð26Þ

C ¼ ½C1;C2;y;CNþ2	T; ½x	 #M ¼ ½x0;x1;y;x #M�1	
T; and ðN þ 2Þp #MpM: Note that the Xi’s have

been replaced by their estimated values, #Xi; from the first two stages of Prony series modelling.
The genuine poles locations are identified by good clustering behavior. Since the response decays
with time, the SNR is poorer in the latter part of the signal. This puts an upper limit on the
number of data samples that can be utilized for least-square formulation. Higher rows of V are
also subject to larger errors than earlier rows because the estimates of Xi are raised to higher
powers [25]. Specifically, if the estimate #Xj of a pole Xj has an error eXj

; i.e., #Xj ¼ Xj þ eXj
; then

#Xn
j EX n

j þ neXj
X

ðn�1Þ
j in the ðn þ 1Þth row.

For the system and noise levels considered earlier in the section on estimation of poles, the
corresponding residues were also calculated by using the least-squares solution of Eq. (25). The
true values and the estimates of the pj and Cj are shown in Figs. 5 and 6, respectively.

3.3.4. Presence of components that are difficult to detect

The model of viscoelasticity, with the relaxation kernel expressed as a sum of exponentials, may
contain a large number of time constants. The modelling of the response of the system can always
be improved by adding more terms to the relaxation kernel. However, not all components can be
detected by a single experiment such as the one considered here. The cases in which the
detectability of a mode is hindered, because of presence of noise, are when: (1) there is a small
residue Cj associated with the mode: the mode is ‘weak’ and is difficult to distinguish from the
noise floor; (2) there is a very slowly decaying non-oscillatory mode: over the span of
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Fig. 5. System eigenvalue estimates for two different SNRs: (a) 60 dB; (b) 50 dB; for 100 independent realizations, for a
system with N ¼ 2: ‘�’ denotes a pole estimate, ‘þ’ denotes the true location of a pole.
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measurement time, the mode response appears almost as a constant, and hence is a very small
component in the acceleration response; (3) there are very fast decaying modes: if the real part of
exponent pj is large, the corresponding mode decays very fast, and thus, for a particular choice of
sampling frequency Fs; the mode may be missed for want of a sufficient number of data points to
estimate the two unknowns associated with each fast-decaying exponential; and (4) there are
closely spaced poles.
These special cases of values of Cj and pj can be traced to conditions on the values of the system

parameters: c; k; ai and ai: Here the case of interest is the dependence of the Cj and pj on
the viscoelastic parameters ai and ai; since, in the experimental situation, c and k have values close
to those of a second order system model with no viscoelastic components. For the case of N ¼ 1;
the relationships are illustrated in Fig. 7. g ¼ a=a has been chosen as a parameter for analysis,
along with a; since g indicates the stability and damping of the non-oscillatory mode more clearly
than the parameter a; for a system with N ¼ 1: Specifically, the decay-rate of the non-oscillatory
mode of the response reduces as g-1; and the system is unstable for g > 1: As noted in Ref. [26],
g > 1 renders the model physically meaningless, since it corresponds to the existence of negative
stresses. Only the region g > 0:6 is shown, since for smaller values of g; the features are quite
regular.
The change in the nature of the roots ðpjÞ; as a function of a and g can be observed from Fig. 7.

The real and imaginary components of pj are shown separately, while only the magnitudes of the
residues Cj are shown. There exists a thin region of values of a and g for which all the exponents,
pj; are real. The regions of small values of �Rðp1Þ; marked by pale shades in Fig. 7(a), represent a
combination of parameters for which the non-oscillatory mode decays very slowly. Regions of
very high values of �RðpjÞ are marked by darker shades in Figs. 7(a)–(c), which represent
parameter regions where the modes decay very quickly. Similarly, regions of small value of
residues, the case of a weak mode, can also be observed in Fig. 7(g) where go0:82 and a > 100: All
these regions represent combinations of a and a for which it is generally difficult to identify the
three modes, especially the non-oscillatory mode.
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3.3.5. Other techniques for estimation of signal poles and residues

In this section, some of the popular approaches that were not utilized for the present work,
are briefly discussed. The first of these is the method of ‘singular value decomposition’ (SVD)
[27,28]. The SVD procedure can provide an improvement if the singular values associated
with the true exponentials are easily distinguishable from those of noise. Then, a ‘reduced
rank approximation’ to the data matrix may be formed by removing the singular values
corresponding to noise. This would effectively enhance the SNR of the signal. The number
of significant singular values represents the correct model order. If a clear distinction cannot
be made between the singular values due to the true exponentials and those due to the noise,
such as in the case of weak exponentials in the signal, the method may not provide any
improvement.
If the response time series contains modes with time constants of disparate orders, data

segmentation can provide significant improvement. The data may be collected at a high sampling
frequency. Then the portion of the data where fast decaying components are present (mostly in
the beginning of the transient response data) may be segmented out and subjected to the process
of pole estimation. The remaining data can be downsampled to a lower sampling frequency and
used for further analysis. This can potentially reduce the computation time, especially if the time
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series is very long. In a related method, called the ‘moving window’ approach, data is segmented
into several, possibly overlapping, pieces, and Prony’s method, with high order forward and
backward prediction, is applied to each segment [29]. The signal poles are picked out based on the
assumption that they are consistent from one window to another, while the noise-related poles
change locations greatly.
Several other methods have also been suggested for estimating the exponents and residues of a

Prony series representation of the time series. Some of these are basically similar to Prony’s
method [13,17,18,30], while others are only empirical techniques [31,32]. Carrot and Verney [13]
used a pole-zero (ARMA) model for the relaxation modulus. The authors proposed a method for
picking out the correct model orders and ‘genuine roots’ (system zeros and poles) based on the
idea that the extra zeros and poles (‘artificial roots’), that are generated if model orders are over-
estimated, appear as pairs of very close complex numbers called Froissart doublets. By observing
this characteristic over several model orders, all the genuine zeros and poles could be identified,
and thus the correct model order also determined.
A ‘domain of influence’ method was described by Gant and Bower [31] for fitting a sum of

exponentials (Prony series) to the response data for viscoelastic materials. The method was based
on the idea that an exponential mode has noticeable influence over only a finite scale of time, and
that a particular mode can be fitted to a portion of the stress–relaxation curve. The time scale was
divided on a decade-scale, and over each decade the dominant time constant was evaluated by
observing the change of instantaneous modulus. While the method was shown to generate good
curve-fits to test data, no mathematical basis was put forward to explain the rationale behind the
adopted approach. A related approach was used by Park and Schapery [32] for finding the time
constants in the relaxation modulus of a linear viscoelastic system. The poles corresponding to the
modulus were estimated by observing the peaks in the magnitude of the complex modulus
function, when plotted on a logarithmic frequency scale.
It may also be noted that the problem of simultaneous determination of both the residues Cj

and the poles Xj; based on direct least-squares minimization of the error between the measured
response samples and the model xn; is a highly non-linear and difficult estimation problem.
Techniques have been suggested to this effect, such as the method of steepest descent and iterative
prefiltering (Steiglitz–Mcbride method) [20]. However, these methods are computationally
expensive and exhibit convergence problems [16]. An iterative pole-by-pole estimation method,
based on the iterative prefiltering technique, was suggested by Ramalingam et al. [19]. The method
is shown to have better convergence properties when compared to the parent algorithm, especially
when a large number of signal components (poles) are present.
For specific problems, each one of these approaches has been shown in the literature to yield

excellent results. However, there does not seem to be clear evidence that any of these will perform
any better than the approach adopted for the research presented in this work. In the presence
of significant measurement noise, or for particular cases of nature of response considered in
Section 3.3.4, each one of these methods is susceptible to producing poor estimates. Moreover,
many of these approaches are fundamentally similar to the approach considered here, as discussed
above. Furthermore, the approach considered for the present work allows for easy and direct
evaluation of the effect of noise and uncertainties. The technique was found to be numerically
stable even for very high model orders, and does not suffer from convergence problems which
may be an issue with the iterative schemes.
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3.4. Choice of sampling frequency

The sampling frequency for data acquisition needs to be sufficiently high to capture fast
decaying modes, as well as to accurately determine the location of onset of the free motion. Too
high a sampling frequency, however, would mean a large number of data points for the measured
response and hence large computation times. The most significant effect of choosing a high
sampling frequency is on the pole estimation in the presence of measurement noise. It may be
recalled that the poles Xj are related to the eigenvalues pj by Xj ¼ expðpj=FsÞ; where Fs is the
sampling frequency in Hz. Thus a high sampling frequency pushes the poles of the system closer
to the unit circle. It also increases the error sensitivity for estimation of pj; since, to the first order,
the approximation error in estimation of the eigenvalues is related to the error in estimation of the
poles by

Dpj ¼ Fs

DXj

Xj

: ð27Þ

For large values of Fs; XjE1: This makes the error in pj approximately Fs times the error in Xj:
Thus at higher sampling frequencies, the estimation of pole locations needs to be more accurate.
Simulations revealed that for the levels of noise actually present in the experimental data, the

accuracy of estimation was not much affected by the choice of sampling frequency so long as no
fast decaying components were lost at the lower sampling frequency, and model orders ðMÞ were
sufficiently large so that more than one-tenth of the period of all the modes present in the signal
were spanned by M=Fs; the model ‘length’ in seconds. The model orders for observing pole
clusters, thus, have to be chosen higher for higher sampling frequencies. This can be done as long
as the numerical implementation of the method remains stable and accurate.

3.5. Problem of dry friction

Dry friction can arise in the system in two different ways, one internal to the viscoelastic substance
arising from interaction of rubbing surfaces [33], and the other arising in the experimental setup
supporting the foam-mass system. The effect of friction on the system response depends on the
dynamic model used to describe the friction forces. If a Coulomb friction model is chosen, the effect
of external dry friction on the system can be described fairly accurately by incorporating the dry
friction term in the forcing function f ðtÞ of the dynamic system being considered here [34]. The
appropriate equation of motion is then given by Eq. (7) with non-zero f ðtÞ:
For ’xa0; the forcing function can be modelled as: f ðtÞ ¼ �f0 sgnð ’xÞ; where f0 is a constant

representing the kinetic friction force. The equilibrium position xn is not known in this case, but it
satisfies the constraint jxnjpxs [35], where xs ¼ fs=kð1�

PN
i¼1 ai=aiÞ and fs is the maximum static

friction force. For ’xa0; Eq. (7) is piecewise solvable and can be written as

m .x þ c ’x þ kx � k

Z t

0

XN

i¼1

aie
�aiðt�tÞxðtÞ dt ¼ �f0; ’x > 0; ð28aÞ

m .x þ c ’x þ kx � k

Z t

0

XN

i¼1

aie
�aiðt�tÞxðtÞ dt ¼ f0; ’xo0: ð28bÞ
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In this case, the response xðtÞ cannot be expressed as a sum of N þ 2 exponentials. Since
the equation changes in every half-cycle (where a half-cycle is any continuous piece of
motion during which the velocity does not change sign), the corresponding solution is also
expected to be different. It can be shown that the solution during ith half-cycle is expressible in
the form

xðtÞ ¼ Ki þ
XNþ2

j¼1

Ci
je

pjt; ð29Þ

where Ki and the coefficients Ci
j are constants which are different for every half-cycle. Since

acceleration data is used for estimation, the information of the constant part K is not directly
available from the measured time series. A closed-form solution for the free response of the system
and an analytical procedure, for calculating friction and the system parameters in the presence of
dry friction, have been presented by Singh et al. [34].
The system identification procedure developed in Ref. [34] is based on the availability of

residues and eigenvalues for the acceleration response. The data for each half-cycle needs
to be modelled independently as a sum of a constant and N þ 2 exponentials, as described
by Eq. (29). In practice, the estimation of these coefficients using Prony’s method directly
on response data, as described in Section 1.3, is difficult because of limited data-length available in
any half-cycle. Some improvement in the estimation of poles can be achieved by combining
information from individual half-cycles. Since the eigenvalues pj are the same for all the
half-cycles, the linear prediction equations obtained from individual half-cycles, in the first
step of Prony’s method, can be grouped together when finding the least-squares solution for
coefficients of prediction polynomial. This process leads to a unique set of system poles for the
complete data. However, the maximum allowable model order is limited by the size of the data
from the shortest half-cycle. Specifically, if the response of a system is represented by fxng; then
the system of equations for estimation of the coefficients Ai of the pth order prediction
polynomial, in absence of dry friction, obtained in the first step of Prony’s method, can be
represented as

xp�1 xp�2 ? x1 x0

xp xp�1 ? x2 x1

^ ^ ^ ^

xN�3 xN�4 ? xN�p�1 xN�p�2

xN�2 xN�3 ? xN�p xN�p�1

2
6666664

3
7777775

A1

A2

^

Ap�1

Ap

2
6666664

3
7777775
¼ �

xp

xpþ1

^

xN�2

xN�1

2
6666664

3
7777775
; ð30Þ

where N is the total data length, and A0 ¼ 1: The system of equations for estimation of Ai in
presence of dry friction can be obtained from Eq. (30) above, by removing the rows that have data
xn spanning over two or more different half-cycles.
The residues Ci

j for each half-cycle can be obtained by using Eq. (25), since the exponents pj are
known. The equations of displacement continuity and velocity continuity, at the intersection of
two consecutive half-cycles, can be used as additional constraints in this estimation process, and
the residues for all the half-cycles can then be estimated simultaneously, in an optimized fashion.
More details of this analysis can be found in Ref. [34].
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3.6. Propagation of errors in residues and poles to material parameter estimates

In the previous sections, various factors affecting the estimation procedure were studied and
modifications to the identification procedure described to deal with the associated problems. The
net effect of the errors and uncertainties is to introduce errors in estimation of the exponents pj

and residues Cj: These errors are propagated to the final estimates of the system parameters: c; k;
ai and ai; in the second and third stages of the identification procedure.
For the case of systems with N ¼ 1; an algebraic analysis was carried out to evaluate the effect

of small errors in the estimation of Cj and pj on the final estimates of the system parameters.
The residues Cj and the exponents pj are assumed to have independent additive errors ej and dj;

respectively, so that the estimates #Cj and #pj can be written as

#Cj ¼ Cj þ ej ð31Þ

and

#pj ¼ pj þ dj; j ¼ 1; 2;y;N þ 2: ð32Þ

In the estimation of a; the roots of a quadratic equation ðb1;2Þ are determined. The two roots are

b1 ¼ a; b2 ¼ bspurious ¼
c

m
þ

’x0

x0
; ð33; 34Þ

where x0 ¼
P

j Cj is the true value of the initial displacement, and ’x0 ¼
P

j Cjpj represents the
true value of the initial velocity. By using Eqs. (31) and (32), it is possible to propagate the errors
in the Cj and pj to errors in the roots b1;2 of a: Their estimated values, denoted #b1;2; are related to
their true values, to the first order of approximation, by

#b1;2 ¼ b1;2 1�
Dx0

x0
8
Db

D

� �
8

Dg

D
þ

gDx0

Dx0

� �
; ð35Þ

where upper signs correspond to #b1 and the lower signs to #b2: Dx0 ¼
P

j ej denotes the error in the
estimation of x0: The quantities Db; D; g and Dg are related to the errors ej and dj by the following
expressions:

Db ¼ � aþ
c

m

� �
Dx0 þ x0

X
j

dj � D ’x0; ð36Þ

D ¼ ’x0 þ x0 �aþ
c

m

� �
; g ¼ x0

c

m
þ ’x0

� �
a ð37; 38Þ

and

Dg ¼ � x0 aþ
c

m

� �X
j

dj þ
X

j

pjdj

 !
þ

k þ ca
m

� �
Dx0

þ aþ
c

m

� �
D ’x0 � ’x0

X
j

dj þ D .x0; ð39Þ

where D ’x0 ¼
P

j Cjdj þ pjej; and D .x0 ¼ 2
P

j Cjpjdj þ
P

j p2j ej denote the errors in the estimation
of the initial values of the velocity and the acceleration, respectively.
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From Eq. (35), it can be deduced that for small values of x0; the error in estimation of a will be
amplified. For impulse tests x0 will usually be small and hence error-sensitivity is expected to be
large. This holds true also for systems with N > 1; since the coefficient of the highest order term in
Eq. (17) is always x0: Thus even for small errors in Cj and pj; there exists the possibility of a large
error in estimation of ai: For impulse tests, the system is known to be initially at rest before the
impulse is imparted (i.e., x0 ¼ 0). For this case, the two roots #b1;2; to the first order of
approximation, are given by

#b1 ¼ a; #b2 ¼ #bspurious ¼
c

m
þ

’x0 þ D ’x0

Dx0
: ð40; 41Þ

Thus for impulse tests, the genuine root is approximated to its true value, to first order of
approximation.
The estimation procedure for other parameters involves solving a set of linear equations,

and the errors do not show a similar direct sensitivity to initial conditions. However, the
values do depend upon estimated value(s) of ai: For the case of N ¼ 1; these errors are bounded
as

Dcpm jDaj þ
X

j

jdj j

 !
; ð42Þ

Dkpm a�
c

m

� �
Da

��� ���þ c

m

X
j

jdj j þ
X

j

jdjpj j

( )
ð43Þ

and

Dap
kjD *aj þ jaDkj

k2
; where D *a ¼ m *a

X
j

dj þ Da
pj þ a

: ð44Þ

The results for the case of two terms ðN ¼ 2Þ are qualitatively similar to these results. This error
analysis is valid only if the errors dj and ej are small relative to pj and Cj: While this is generally
true for the experimental conditions considered here, it may not always be correct. Typical
examples include cases where the response contains weak exponentials or components which
decay either very quickly or very slowly. In these cases, the errors in estimation of the eigenvalues
and residues may not be small.
The estimates of Cj and pj from simulated responses with SNRs ¼ 60 and 50 dB (as reported in

Section 3.3) were used for estimation of system parameters. Over 500 different randomly
generated combinations of Cj and pj; within the range of variation of their values for the given
noise level, were used for estimation of the parameters. The results (mean values and standard
deviations) are shown in Table 1. The standard deviations are shown in parenthesis below their
respective mean values. For complex quantities, the standard deviations were calculated
separately for the real and the imaginary parts. Good accuracy in estimation is observed.
However, the estimation of the coefficients ai and RðaiÞ is more sensitive to noise than the
estimation of the other parameters.
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4. Experimental analysis

In this section, the results of applying the system identification procedure to measured
responses of the foam-mass system (shown in Fig. 1) are given, along with the testing procedures
necessary to produce repeatable results. The initial tests, that illustrate the application of the
system identification procedure to short-duration impulse responses, were conducted with the
foam at 55% static pre-compression, which was obtained by using a mass of m ¼ 1:2 kg: Tests
were then conducted at various compression levels to examine the variation in the model
parameters as a function of precompression level. Finally, an analysis of the quasi-static creep
behavior is presented.

4.1. Experimental set-up and data-acquisition system

The system was composed of a 3-in foam cube loaded with a mass on the top. The foam cubes
were cut from the bolsters of a car seat cushion. A fixture was fabricated, consisting of a rigidly
fixed base plate and four vertical guide posts that constrain a metal block to move in the vertical
direction. The foam cube is sandwiched between the metal block and the base. A schematic
diagram of the experimental set-up is shown in Fig. 1. The foam cube is glued to thin metal plates,
which are in turn bolted to the base plate and to the top block to prevent the top block from losing
contact with the foam during vibration. Low-friction linear bearings are used to guide the block
and minimize the effects of sliding contact points between the top block and the guide posts.
Additional mass blocks can be attached to the top of the primary block to increase the level of
pre-compression. An instrumented PCB-made piezoelectric hammer (Type no. 086C03) with a
rubber tip was used to generate and measure an impulsive input to the foam-mass system.
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Table 1

Effect of measurement noise on estimation of Cj ; pj and system parameters

True values Estimates SNR ¼ 60 dB Estimates SNR ¼ 50 dB

p1;2 �8:537791:906i �8:374791:847i �8:028791:869i
ð0:24070:031iÞ ð0:52070:590iÞ

p3;4 �6:463746:021i �6:457746:026i �6:459746:031i
ð0:03470:031iÞ ð0:05770:058iÞ

C1;2 0:005770:0049i 0:005670:0049i 0:005570:0048i
ð0:000170:0002iÞ ð0:000370:0004iÞ

C3;4 0:009370:2051i 0:009370:2051i 0:009370:2052i
ð0:000870:0007iÞ ð0:001670:0011iÞ

a1;2 10790i 9:816789:953i 9:454790:031i
ð0:26570:401iÞ ð0:56770:659iÞ

a1;2 �375i �2:97874:944i �3:02574:796i
ð0:20870:129iÞ ð0:35770:252iÞ

c 10 10.031 10.068

(0.159) (0.297)

k 2500 2497 2487

(13) (23)

R2 — 0.9999 0.9998
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Four Kistler Type 8303 accelerometers (DC to 40 Hz) were placed on top of the metal block to
measure the transient response of the foam-block system with minimum rocking (explained in
next section). The accelerometer and force transducer signals were passed through 120 dB/Octave
roll-off, analog, anti-aliasing filters, part of a HP3566A data acquisition (16 bit) and spectrum
analyzer system. The cut-off frequency of the filters was set to be 0.41 times the sampling rate ðFsÞ:
The sampling frequency used was 4096 samples=s: The frequencies present in the transient
response of the foam-mass system were typically below 50 Hz; and thus well separated in
frequency from any ringing effects induced by the sharp roll-off of the anti-aliasing filter above
1680 Hz: No other filter was used during the data acquisition.

4.2. Testing methodology for short-duration transient tests

Owing to the viscoelastic properties exhibited by the foam, the response of the foam shows
dependence on past history of loading and on recovery time allowed between different tests. The
behavior is different for loading and unloading paths in a cycle because of hysteresis in the foam
[3]. The foam behavior is also dependent on the ambient temperature and humidity. The results
are also affected by friction in the bearings of the test rig and by the non-ideal excitations.

1. Memory of the foam and hysteresis: A period of 2 days was found to be sufficient for the system
to reach equilibrium, both during loading and unloading cycles. Tests were carried out in the
loading part of the hysteresis loop. Thus, before every test, the foam block was first left
completely unloaded for at least 2 days to recover fully from any residual stresses. Then
the foam block was loaded with the required mass and was left for 2 days to settle (creep) to the
new equilibrium position, after which the impulse testing was performed.

2. Rocking motion and friction in bearings: Unidirectional motion of the system is required for the
validity of the model. The foam-mass is constrained to move in a single, vertical direction by
the four vertical guide posts. However, small in-plane rotations of the top plate can be caused
by non-uniformity in the foam, unequal friction in the four linear bearings, and if the applied
impulse is not perfectly centered. Tight fitting bearings reduce the rocking, but at the cost of
increased friction. It was desirable to reduce friction. So the bearings were installed to fit loosely
around the shafts and a thin lubricant was applied. Rocking effects were monitored by
comparing the responses of the four accelerometers placed close to the four edges on top of
the metal block. When the four responses were found to be very close, as is the case shown in
Fig. 8, they were averaged and the result used in subsequent system identification. Providing an
impulse that resulted in negligible rocking motion was difficult and, thus, many impulse
responses had to be generated to obtain one which was sufficiently acceptable for further
analysis.

3. Other sources of error: In order to ensure that non-linear effects were small, the amplitude of
input force from the impact hammer was kept sufficiently small. This was ensured by
monitoring the maximum displacement following the application of an impulse, and was kept
less than 1 cm: Ambient temperature and humidity were also monitored during the tests
because they affect the foam behavior. For the tests described below, the temperature and
relative humidity varied between 201C and 251C; and 35% and 60%, respectively, and thus
variations in the response due to variations in temperature and humidity were small.
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Repeatability of results was monitored by repeating the tests, including the 4-day unloading
and loading sequence. Three to five transient responses were measured in each test, and tests were
repeated at least three times. In subsequent plots where error bars are given, these represent the
maximum and minimum estimate of the parameter of interest from those 9–15 transient response
measurements.

4.3. Analysis of short-duration free response data

4.3.1. Determining t0 and modelling the input force

A typical input and averaged acceleration response are shown in Fig. 9. The earlier part of the
force and response time histories are also shown in Fig. 10, along with a half-sine pulse model of
the input force: f ðtÞ ¼ 121:3 sinð826:735t � 7:771Þ: A much more accurate representation of the
input can be constructed by fitting a 12-term Prony series model to the force time history. These
models of the input force were used to correct the estimates of the residues in Prony series model,
and to convert the free response model to an impulse response model, as described in Section 3.2.
The effects of the hammer tip’s impulse response makes it difficult to ascertain the exact time at

which the impulsive excitation ends and the free response begins ðt0Þ: However, at this point the
acceleration response also undergoes a sharp jump in derivative. Although not obvious from
Fig. 10, by using a high sampling frequency ð4096 HzÞ and expanding the input and response time
histories, the location of time t0 can be accurately determined. Typically, t0 is of the order of
10 ms:
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Fig. 9. A representative sample of the input force (dashed line) and acceleration response (solid line) of the system.

Response is obtained by averaging the measurements made by using the four accelerometers.
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Fig. 10. (a) Input and (b) response plots zoomed around the region of the onset of free motion. Note the sharp change

in response at t ¼ t0: The half-sine model of the input is shown by dashed line in (a).
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4.3.2. Determination of model order and estimation of Cj and pj

Two thousand points (E0:5 s of data) of the free response ðt > t0Þ from a 55% compression
test were analyzed. Prony series models, fit to the time reversed signal, of order 150–450 in steps of
25, were estimated and the pole locations plotted to identify clusters. These clusters are shown in
Fig. 11. The genuine modes are chosen on the basis of their good pole-clustering behavior.
Clusters at high frequencies were also observed for high model orders. These are most likely
related to the poles of the anti-aliasing filters that are very close to the unit circle, a result of the
very sharp roll-off characteristics of the filters. In these cases, the ‘noise pole-clusters’ are
distinguished from those of the system based on the following two criteria: (1) the generally high
frequencies, and (2) the much smaller residues, associated with them. Results from different
independent experiments were also compared to pick out the system poles, which are expected to
remain fairly stationary in location from test to test.
Typically, two pairs of clusters of complex conjugate poles are observed with significant

residues. Good clustering behavior is observed for the lowest-frequency ð6:91 HzÞ pair of poles,
while the clustering is poorer for the second pair of poles located at a frequency of 13:14 Hz: The
lowest-frequency component dominates the response (it has the highest residue), while the
additional pair of poles provides a ‘correction’ term to this predominantly single-frequency
response. This suggests that the transient behavior of the system is predominantly elastic in
nature, with small contribution from the viscoelastic components. An even weaker (smaller
amplitude) mode is also discernible from noise floor at a frequency of 19:6 Hz; if an input force of
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slightly higher amplitude is used during the experiment. The individual contributions of the three
modes to the acceleration response are shown in Fig. 12. The locations of these 3 pairs of poles
are: X1;2 ¼ 0:998870:0105i; X3;4 ¼ 0:998370:0201i; and X5;6 ¼ 0:996470:0300i:
The experimental system response for t > t0 was compared with the modelled responses with

one, two and three pairs of complex conjugate poles (see Fig. 13). The case of one pair of poles
(the primary frequency component only) represents the non-viscoelastic approximation of the
model. As seen, the fit to experimental data with only the main frequency component is poor, thus
indicating the significant role of viscoelasticity. The modelled responses with two or three pairs of
poles match the experimental data well in the early half of the response, but the agreement is poor
in the latter half (see Fig. 13). The two and three mode predictions are very close to each other for
most of the time history. For most of the subsequent analysis, the pair X5;6 was not included, and
the model order was taken to be four, that is, N ¼ 2 for the relaxation kernel. Simulations of three
mode systems were analyzed using two mode approximations to determine the effect of excluding
the third mode. It was found that omission of this weak third mode lead to relatively small errors
in the estimation of material parameters, except, perhaps, in that of viscous damping c: This is
illustrated in columns three and four of Table 2.

4.4. Higher order models

To examine the possible reasons for poor agreement between the model prediction and the
measured response at later times, the response was modelled by using a Prony series with even
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higher model orders, as high as 800 for a data length of 2000 points. It was found that the pole-
clusters corresponding to the system undergo a small ‘drift’ in location, as model orders are
increased from 150 to 800. Typically, for the first two most significant modes, the corresponding
pair of pole clusters both change their location twice (see Fig. 14). One possible reason for this
drift is the presence of closely located modes in the response, which cannot be resolved into
distinct modes by the Prony series modelling. Prony analysis of simulations of responses
containing closely located modes in the presence of noise (SNR in the range of 60–100 dB)
exhibited the same drifting behavior in clustering as was observed with the experimental data. If
the first pair of pole clusters is replaced by three pairs of closely located pole clusters, the second
pair is replaced by two pairs of pole clusters, and the resulting six pairs of poles are used for
estimation of the residues, a much better fit to the experimental response is obtained, as shown in
Fig. 15. The locations of these six pairs of poles are: X 1

1;2 ¼ 0:998870:0105i; X 1
3;4 ¼

0:999770:0121i; X 1
5;6 ¼ 0:998270:0098i; X 2

1;2 ¼ 0:998370:0201i; X 2
3;4 ¼ 0:997870:0207i; and

X 3
1;2 ¼ 0:996470:0300i; where the superscripts denote the closeness of these poles to the original

locations. Note that the old clusters have retained their locations, while 3 new pairs of (possible)
pole clusters have been added. The inability of Prony’s method to resolve such closely space
modes with moderately high model orders was verified by numerical simulations. Hence this
phenomenon should be investigated further.
Another reason for the drift in the pole locations could be the presence of friction in the system,

in which case, the model assumptions for the system response are not valid. In the presence of dry
friction, the response is different for each half-cycle [34], and hence the Prony technique should
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not be applied directly. In doing so, the Prony series model will attempt to model the
discontinuities within the data at the end of each half-cycle and this may also cause pole locations
to shift, as more discontinuities are spanned by the model. So the improvement may just be due to
an increase in modelling capability with increased model order.

4.4.1. Conversion of the free response model to an impulse response model

After the exponents and residues for the free motion data were identified, the impulse response
coefficients Cj were determined by using Eq. (22). The coefficients Fr and mr for the forcing
function f ðtÞ were determined by fitting a 12-term Prony series to the input force data for 0otot0:
The residues generated from modelling of the acceleration response after t ¼ t0; and those of the
corresponding impulse response (extracted by using Eq. (22)), are shown in the first two rows of
Table 2.
The estimates of the system parameters were obtained by using the procedure outlined in

Section 2. For N ¼ 2; Eq. (13) was solved for three roots of ai; yielding one real and a complex
conjugate pair of roots. The real root was identified as the spurious root related to the initial
conditions and this was verified by conducting impact tests with slightly different input force
amplitudes. Its value was again verified by using Eq. (18). The complex conjugate pair a1;2 was used
in step 3 of the identification procedure for estimation of the remaining parameters: c; k; and a1;2:
If the free response model for data after t ¼ t0 s; with acceleration integrated twice to give

displacement, is assumed to be the true impulse response of the system, the errors in the identified
system parameters are usually less than the observed experimental variability (see the 55%
compression data in Fig. 17). In doing so, the free response must be traced back to the proper
initial conditions for the impulse response, that is, x0 ¼ 0: This can be done by multiplying the
residue #Cj of the free response after t ¼ t0 with a correction factor of e�pj #t0 ; that is Cj ¼ #Cje

�pj #t0 ;
where #t0 is the time correction required to make x0 ¼

P
j Cj ¼ 0; and Cj are the genuine residues

to be used. Note that there is no deconvolution involved in this process. The parameter estimates
for the two cases (uncorrected and corrected) are shown in columns two and three of Table 2.
While this indicates that the free motion, beyond t ¼ t0 can be assumed to be the impulse response
of the system without introducing any significant error, the correction was still applied for all the
results presented here.
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Table 2

Estimation of system parameters with and without residue correction

Original values Corrected values Corrected values

Two mode model Two mode model Three mode model

C1;2 ð�10�3Þ ð�0:2473:02iÞ ð�1:9178:38iÞ ð�2:0178:29iÞ
C3;4 ð�10�4Þ ð0:2470:14iÞ ð5:4275:70iÞ ð5:4775:21iÞ
C5;6 ð�10�5Þ — — ð1:2470:26iÞ
c (Ns/m) 1.09 2.20 0.10

k (N/m) 2871 2799 2832

a1;2 (1/s) 10:35780:32i 10:30779:79i 10:42780:22i
a3;4 (1/s) — — 14:887122:95i
a1;2 (1/s) �6:5777:35i �6:6277:06i �7:2576:04i
a3;4 (1/s) — — �10:2274:22i
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5. Variation of model parameters with compression level

The experimental methodology presented above was used for estimation of the system
parameters at several levels of static compression, ranging from 30% to 60%. For compression
levels less than 35%, only one pair of complex-conjugate poles could be distinguished from the
noise floor. Thus, the behavior of the system was predicted to be essentially viscously damped in
nature, without memory effects, at this compression level. To illustrate the variability in the Prony
series parameter estimates, the real and imaginary parts of the pj and corrected Cj are shown in
Fig. 16, along with their corresponding error bars. The estimated values of the system parameters,
along with the maximum and minimum estimates of these parameters from different tests, are
shown in Fig. 17.
The estimates are based on data from six independent response realizations. The damping and

stiffness values estimated from a model without viscoelastic terms are also shown for comparison.
Both viscous damping and stiffness tend to increase as compression is increased. The imaginary
part of a; which may be called the ‘viscoelastic frequency’, also increases with increase in
compression. No definitive trends could be observed in the real part of a (which represents
‘viscoelastic damping’), or in the real and imaginary part of a: These estimates of these three
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parameters were also the most sensitive to experimental variations and thus exhibited larger
variability than the other parameter estimates, obscuring any trends that may be present.
The RðaiÞ can be interpreted as the inverse of the time constants associated with the foam, ti;

that is, ti ¼ 1=RðaiÞ: Within the range of variability of estimates of RðaiÞ; their values, for all
compression levels, appear to be almost constant and represent time constants in the range of
0.067–0:100 s:

6. Quasi-static creep experiment

To gain information about relatively longer time constants associated with the foam, a quasi-
static creep test was performed. For this test, the foam block was loaded with a mass of 1:178 kg
in the test fixture and its compression was measured over time using a Schaevitz-made linear
variable differential transformer (LVDT) with a 2-in stroke length. The mass block was first
brought in contact with the foam at zero velocity and then released, in order to provide zero initial
conditions for the experiment. The measured quantity was displacement (creep) of the foam from
its original state of zero compression. The response data was recorded at a sampling frequency of
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0:5 Hz; for a duration of over 8 h: The creep response is shown in Fig. 18, along with a three-term
Prony series used to fit the data. The measured response includes some discrete jumps in
displacements, believed to be due to slip–stick behavior caused by dry friction in the fixture.
To obtain the three exponents, the data was downsampled to 0:03125 Hz; and model orders of

100–250 were used in the forward prediction stage (step 1) of the Prony series estimation. The
positions of the three poles were estimated to be 0.9972 and 0.9593 and 0.2327 on the real axis in
complex plane, and were picked because of their good clustering behavior. The poles correspond
to time constants of 3:29 h; 12:84 min; and 22 s; respectively. Owing to the poor quality of
experimental data, the estimates of the time constants are not accurate. Specifically, the latter two
could be as large as 48 min and 55 s; respectively, depending upon which model orders were used.
While somewhat imperfect due to the presence of dry friction, this test demonstrates the existence
of very long time constants in the response of polyurethane foam. These time constants are not
identified when using the impulse tests. This supports the observed behavior that the foam block,
when loaded with a mass block, takes a long time to reach its static equilibrium. Typically, a
duration of about 8 h was required for the considered system to reach its steady state of 52%
compression.

7. Summary and conclusions

A method for the identification of the parameters of a linear, dynamical, single degree of
freedom, viscoelastic system was presented. The viscoelastic term in the model is a convolution of
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the response with a sum-of-exponentials kernel function. The identification method utilizes the
free response of a system responding to an impact and is based on Prony series modelling of this
response. Pole locations and model order are determined by fitting high order models to a time-
reversed response history and identifying clusters in pole maps. Further verification of pole
location came from using responses from multiple tests. The Prony series parameter estimates
were then used to determine the material parameters, a two-step processes requiring identification
of the exponents in the viscoelastic kernel followed by a least-squares solution to a set of linear
equation. Effects of dry friction and noise and the difficulties of estimating the parameters of
closely spaced, weak, and fast or slow decaying modes were discussed. The technique was applied
to identifying the material parameters of polyurethane foam pre-compressed to various levels. The
long memory of the foam, its sensitivity to ambient temperature and humidity, and its non-linear
stiffness characteristics all influence the response, and thus an experimental procedure to produce
repeatable results in the foam testing was established. Prony series models were also used to model
long-term static creep behavior, though dry friction effects in the foam testing fixture affected the
accuracy of these results.
The method could be successfully applied to the identification of foam. A two-term kernel

function resulted in a reasonable model of the system, but there is evidence that perhaps an even
higher number of terms are required in the kernel to fully model the response time history.
However, inclusion of these terms resulted in poles that are so close that the Prony series method
does not identify them as separate pole clusters. Their presence was revealed only when examining
pole drift at very high model orders. This effect was confirmed through realistic simulations of the
response. However, by increasing the model order, it will always be possible to improve the model
fit to the data, thus the validity of mass-foam system models with closely spaced components
should be investigated further.
The impulse testing with a two-term kernel model resulted in time constants between 0.067 and

0:1 s; and pole clustering from modelling the response of the creep test resulted in the
identification of three strong components with time constants around 20 s; 13 min; and 3:5 h:
Clearly, there is a gap between these groups of time constants, and methods to identify whether
time constants between 0.1 and 20 s exist should be developed. Modelling the creep response
closer to the application of the mass does reveal shorter time constants but the lack of data at this
location make their estimation problematic. The relationship between the time constants of the
viscoelastic kernel terms and the time constants associated with the modes present in the response
is complicated, as illustrated in Fig. 7. If parameter combinations result in weak, fast decaying or
slow decaying free response modes, these may be difficult to identify accurately, if at all. Poor
identification at this stage will result in extremely poor estimation of the material properties.
Applying the model with the two-term viscoelastic kernel to foam at different compressions

revealed a growth in viscous damping ðcÞ; stiffness ðkÞ; and the frequency of the exponential in the
viscoelastic kernel, as the compression increased from 35% to 60%. Any variation in the other
parameters was not present or obscured by the variance of the parameter estimates. In future, the
method will be applied to a variety of foams to detect how the parameters vary as a function of
material and processing parameters, and to further assess the accuracy and robustness of the
identification process. The steady state response of this system to harmonic excitation when non-
linearities in the foam’s elastic properties are excited is also being studied through the use of
harmonic balance models.
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Appendix A. Derivation of roots of Eq. (13) for N ¼ 1

It was discussed in Section 3.1 that Eq. (17) yields N þ 1 roots for N unknowns. The spurious
root was reported to be related to the initial conditions x0 and ’x0: For the case of N ¼ 1; the proof
is presented below.
For N ¼ 1; Eq. (17) becomes

A0b
2 þ A1bþ A2 ¼ 0; ðA:1Þ

where, using Eq. (14), the coefficients A0; A1; and A2 become

A0 ¼ C1 þ C2 þ C3; ðA:2aÞ

A1 ¼ C1ðp2 þ P3Þ þ C2ðp1 þ p3Þ þ C3ðp1 þ p2Þ; ðA:2bÞ

A2 ¼ C1p2p3 þ C2p3p1 þ C3p1p2: ðA:2cÞ

Cj; and pj; j ¼ 1; 2; 3; are the response coefficients for N ¼ 1: The coefficients A0; A1; and A2 need
to be expressed as functions of system parameters and the initial conditions. For this purpose,
note that the initial conditions are related to Cj and pj as

C1 þ C2 þ C3 ¼ x0; ðA:3aÞ

C1p1 þ C2p2 þ C3p3 ¼ ’x0: ðA:3bÞ

The exponents pj are the roots of the characteristic equation of the system for N ¼ 1: Hence

mp2j þ cpj þ k � k
a

pj þ a
¼ 0; j ¼ 1; 2; 3; ðA:4Þ

which can be re-written as

mp3j þ ðc þ maÞp2j þ ðk þ caÞpj þ kða� aÞ ¼ 0 ðfor pjaaÞ: ðA:5Þ

The exponents pj can be related to the coefficients of Eq. (A.5) as

p1 þ p2 þ p3 ¼ �a�
c

m
; ðA:6aÞ

p1p2 þ p3p1 þ p2p3 ¼
k þ ca

m
; ðA:6bÞ

p1p2p3 ¼ �
k

m
ða� aÞ: ðA:6cÞ
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Thus we have

A0 ¼ x0; ðA:7Þ

A1 ¼ðC1 þ C2Þp3 þ ðC2 þ C3Þp1 þ ðC3 þ C1Þp2
¼ðx0 � C3Þp3 þ ðx0 � C1Þp1 þ ðx0 � C2Þp2
¼ x0ðp1 þ p2 þ p3Þ � ðC1p1 þ C2p2 þ C3p3Þ

¼ � x0 aþ
c

m

� �
� ’x0; ðA:8Þ

A2 ¼ðx0 � C2 � C3Þp2p3 þ ðx0 � C3 � C1Þp3p1 þ ðx0 � C1 � C2Þp1p2
¼ x0ðp1p2 þ p3p1 þ p2p3Þ

� fðC1p1 þ C2p2Þp3 þ ðC2p2 þ C3p3Þp1 þ ðC3p3 þ C1p1Þp2g

¼ x0
k þ ca

m

� �
� f ’x0ðp1 þ p2 þ p3Þ � ðC1p

2
1 þ C2p

2
2 þ C3p

2
3Þg

¼ x0
k þ ca

m

� �
þ ’x0 aþ

c

m

� �
þ ðC1p

2
1 þ C2p

2
2 þ C3p

2
3Þ: ðA:9Þ

Multiplying Eq. (A.4) by Cj and summing up for all j yields:X3
j¼1

Cjp
2
j ¼ �

c

m

X3
j¼1

Cjpj �
k

m

X3
j¼1

Cj þ
ka

m

X3
j¼1

Cj

aþ pj

: ðA:10Þ

Using Eqs. (13) and (A.3) in Eq. (A.10), we getX3
j¼1

Cjp
2
j ¼ �

c

m
’x0 �

k

m
x0: ðA:11Þ

Using this expression for
P

j Cjp
2
j in Eq. (A.9) gives:

A2 ¼ a ’x0 þ
ac

m
x0: ðA:12Þ

By using expressions for A0; A1; and A2 in Eq. (A.1) and simplifying

x0ðb� aÞ b�
c

m
�

’x0

x0

� �
¼ 0: ðA:13Þ

If x0a0; this equation yields two roots

#b1 ¼ a; ðA:14Þ

#b2 ¼
c

m
þ

’x0

x0
: ðA:15Þ

#b2 is the spurious root. When x0 ¼ 0; this root does not arise because A0 � 0 8N; and hence
Eq. (17) is of order N: The expression for the spurious root remains the same for other values of N
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also. This can be shown by substituting Eq. (A.15) into the left-hand side of Eq. (17) and proving
that the result is zero.
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